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APPLICATIONS OF OPTTHMAL CONTROL THEORY TO IMMUNOLOGY

Alan S. Perelson
Theoretical Division
University of California
Los Alamos Scientific Laboratory
Los Alamos, New Mexico 87545

Abgtract - When an animal is challenged by a foreign substance which pro-
motes an imnune response, certain cells within the animal begin dividing, secret-
ing antibody molecules, and differentiating into more specialized 211 types.
Optimal control theory is applied to ascertain the best strategy available to the
immune system in allocating its cells. By examining a variety of mathematical
models for cell populations and their antibody production, it 1s found that the
optimal strategy of bang-bang control is robust. Experimental evidence which

supports such strategies is also discussed.
I. INTRODUCTION

All vertebrates contain a collection of molecules and cells, called the
immune system, designed to defend the animal from disease causing agents. When
an animal is evposed to a foreign substance, an antigen, in the immunologists's
jargon, a class of white blood cells, B lymphocytes, are stimulated to prolifer-
ate and secrete antibody molecules. Antibodies specifically bind to the anti-
gen and lead to its elimination from the animal. Some B lymphocytes undergo
further differentiation into plasma cells or memory cells. Plasma cells have
lost their ability to divide and have specialized in secreting antibody at ex-
tremely high rates. Memory cells are resting (non-dividing) cells which do not
secrete antibody, but rather remain in reserve for future encounters with anti-
~en. Memnry cells are believed to be responsible for our not getting many
diceases a second time and their formation is the goal of preventive immunization
programs.

In this paper I will show how optimal control theory can be applied to the
study of B cell proliferation and differentiation. The work 1 will summarize has
been done by me in collaboration with Majdedin Mirmirani and George Oster of the
University of California, Berkeley.

Before beginning the mathematical discussion it is worthwhile to point out
the philosophy underlying our calculations. One has to realize that there is no

a priori reason why the immune system or any other biological system should beheve
in an optimal fashion, Indeed, there is a very substantive question as to

whether the notion of optimality can be given an operational meaniﬁg for many
biological systems. Typically an organism must cope with many competing influ-



ences so that an improvement in one direction may involve a sacrifice in another.
Thus optimality may have to be interpreted as a best compromise (e.g., Pareto)
solution. Models of biological systems have row bcen developed which exhibit
chaotic dynamics ¢11. For such systems one is hard-pressed to say what is being
optimized. Oster and others have shown that for certain systems, when the genetic
constraints of Mendelian inheritance are imposed upon a population, it may become
impossible for the population to optimize genetically controlled characteristics
$21. Even though one tends to think of evolution as an optimizing process, evo-
lution is an historical process so that improvements generally proceed by small
modifications of existing mechanisms. For such processes there exists ample
opportunity to become trapped at local maxima. Further, even 1f a system is
improving, it may not yet have had sufficient time to reach its optimum. 1In
spite of all these difficulties many real biological systems, when examined
closely, appear to perform a variety of tasks in an optimal fashion. The immune
system which has been evolutionarily static for many tens of millions of years
and 18 subject to extreme seleztion pressures seems a likely candidate for opti-
mization by natural selection. Oster in his contribution to these proceedings
will discuss other biological systems for which optimization arguments appear to

be relevant.

I1. OPTIMAL STRATEGY FOR PLASMA CELL FORMATION

A class of antigens, known as thymus-independent antigens, dies not elicit
the formation of memory ceils. I will first examine the response to such anti-
gens, Consider an experimental animal given a single injection of a non-prolif-
erating thymus-independent antigen such as a bacterial coat pclysaccharide. This
antigen stimulates the formation of a population of large lymphocytes, L, which
can either proliferate with comnstant per capita birth rate b or differentiate
into plasma cells with constant per capita differentiation rate d (seé Fig. 1).
Lymphocytes and plasma cells have finite lifetimes and die at per capita rates
W and up. respectively. I assume b > uL 80 lymphocytes grow at a positive
net rate. On the time ascale of an immure response the death of large lymphocytes
is usually negligible, while the death of plasma cells can be substantial. Large
lymphocytes each secrete antibody, A, at a modest rata k > 0, while plasma cells
each are assumed to secrete antibody at a substaantially higher rate vk, Y > 1.
Determinations of the rate of protein synthesis of these two cell types indicate
that Y can be as large as 1000, although/f@&%ﬁfgﬁgtggen %grgngypical. At
a«ny time t > 0 I assume that a fraction of th: lymphocytes, u(t), 0 € u(t) <1,
are proliferating while the remaining fraction, 1 - u(t), are differentiating
into plasma cells, The problem I wish to consider is how should an animal appor-
tion ites stimulated cells between lymphocytes and plasma cells, so as to secrete
an amount of antibody A* sufficient to neutralize the aatigen in minimal tima,



Stated formally we have the following bilinear optimal control problem

3?‘-3" - {Ta: )
subject to the dynamic constraints
A= k(L + YP) (2)
L = bu(e)L = dl1 - u()IL - Wl (3)
P = dfl - u(6)]L - wP 0)
and the static constraint
0< u(t) <1 (5)

where the control u(*) is a bounded, measureable, real valued function. As an

initial manifold I wish to consider only the point

A(Q) = 0 (6)
LO) =L, >1 ¢))
P(0) = O : (8)

while the terminal manifold is given by

A(t) = A* = 0 (9)
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Gcoﬁctrically. the problem 1 am considering is to find the function u(*) which
yields a trajectory minimizing the transit time between the initial and final
manifolds.

Optimal control problems of this type can be solved by Pontryagin's maximum
principle. Introducing a set of adioint variables {Xo,kl.lz,ka} the Hamiltonian

i8 seen to be
He AO + Xllk(L + yP)) + Azlbu - d(1-u) - uL]L + Xald(l-u)L - uPP]

- L[(b+d))«2 - d13]u 4 terms not involving u (10)

The extremal ccntrol u* is obtained by maximixing H. Thus

1l if o(t) >0
uk(t) = <t[0,1] if o(t) = 0 on a non-zero time interval
0 if o(t)< O (11)
where
o(t) & B (6) - (o) 12)

is the switching function,

The adjoint equations are

: om _

M=o @3)
. oH

Ag = - " Ky - [bu-dQ-u) - 1A, - d(A-ui, 16
. M |

x3 - " -Yk)\l + “Pla (15)

with boundarv conditions
xl(r) -1, Az(r) - 13(T) =0 (16)

Using the adjoint equations one can easily exclude the possibility of o(t)
being zero on a non-zero time in%erval (a singular arc) [3]. Thus the control is
bang-bang and only takes on the values 0 and 1. The remaining analysis of the
switching function reduces to two cases. If &(T) = k[d(y-1l) - b] € 0 then one
can show by directly integrating the adjoint equations backwavrds in time that
u*(t) =1, t€ [0,T]. Alternatively, if O&(T) > 0 then either u*(t) = 0,

t € [0,T] or there is a single switch, 1i.e.,



1l 0K t < t*
ut(t) = (17)
0 thr< t<T

When a switch occurs, the optimal final time TA, and the switching time t* are

given by
A%+ KL
1 L 0
tk = — 1n — (18)
b bLkLOG(r*)
Tk m ¢k 4 TR (19)
vhere
Ay Yptx (“p‘"m"*") yd
G(t*) = — 4 —— = | 7" Jexp(-1, ,T%) + — exp (-1, T*)
b, Wg¥e  \WaOp ¥ "4 up(p = Wy ) &
(20)
A A
bL = b - uL. uLd = W + d, and T* is the solution to
o(T*) = B exp(-uPT*) +C exp(-uLdT*) +Dw( (21)
Here
Yp P~ HMa
Y. + vyd
C= “’"‘m[ 2 + —Xd ] (23)
Yp Wa  Hp T W
vdb ]
k L
D = ——|btd + — (24)
“z.d[ ¥p

and 1 have assumed W ¢ uLd as is the case when typical biolugical parameter
values are employed.

In order to determine if a switch in fact occurs one integrates the state
e —dquations, (2)-(4), with u = 0 and determines the time t at which the final
manifold 1s obtained, A(t) = A*, If t < T* the extremal strategy is u*(t) = 0,
t € [0,T*], and T* = t, On the other hand if t > T* then a switch occurs. For
the parameter set b = d = 0.1 hr, w, = 0.2 Rr-l, W= 107> hr—l, and Y = 10,
one finds T* = 12,2 hr. Additionally, if a = A*/kLo < 50 hr then no switch
occurs. However, a typical value for a 1is 2 x 105 hr [2] and thus a single

switch is to be expected.



By establishing a correspondence betwécn the frce end time problem considered
above and the problem of maximizing the antibody production over a fixed time one
can show that Leitman and Stalford's [u4] sufficicncy conditions for an optimal
control are satisfied [3). Thus u*, as calculated above, is not only an extremal
control, but also an optimal- control.
| A series of more complicated but biolopically more realistic models has also
been examined. One can directly include antigen and minimize the time to bring
the antigen concentration down to a safe level. The extremal control is again
bang-bang when d(y-1) - b < 0, and I expect, although I have not proven, that
there is at most one switch. The biologically irrelevant case (see below),

d(y-1) - b < 0, has not been examined. One can also include other known biological
features in the model: a source for additional stimulated lymphocytes, time de-
lays, or a time dependent rate of antibody secretion, k(t). In all of these in-
stances one finds that bang-bang control is again extremal and that at most one
switch occurs, Consequently, one is led to believe that the pradictions of the

precceding simple model are robust and may have biological significance.

I1T. BIOLOGICAL DISCUSSION OF RESPONSE TO THYMUS INDEPENDENT ANTIGENS

_ The optimal strategy for procducing an amount of antibody A* sufficient to
ﬁéutralize a given antigenic assault in the shortest time is found to
ba: (a) 1f (y-1)d < b, u*(t) = 1, 0 < t € T* i.e,, produce only large lympho-
cytes. Realistic parameter values are d ®*b and Y 10, so this case should
not be relevant to the biological situation; (b) if (Y-1)d > b then it is advan-
tageous to convert lymphocytes into plasma cells. The time at which this differ-
entiation stould proceed depends on the antigen concentration, or in this simple
model A*., If A* is sufficiently small then the optimal strategy is u*(t) = 0,
0<tS<Tk i,e., immediately d.“ferentiate into plasma cells without prolifer-
ating, Clearly this strategy is viable only if plasma cells during their finite
1ifetimes can produce an amount of antibody A*, otherwise proliferation is neces-
sary. Thus 1f A* is larger than a critical amount the op-imal strategy is

ut(t) =1, 0 <t < tk, ur(t) = 0, t*< ¢t < T*, 1.e., proliferate first and then
swvitch to plasma cell prnduction. Examining antigen doses that experimentally
are required t0/sti notfceable immune responses one finds that A* is typically
crders of magnitude greater than the critical value require to give a switch.
Thus the major prediction of this optimal control model ir that following a
single injection of a thymus independent antigen there first should be lymphocyte
proliferation followed late in the immune response by plasma cell production.

Using realistic biological parameter values say b = d = 0,1 hr, uP = 0.2 hr 1,

-1 5
NL < 10 » 10€ y< 100, and @ = 2 x 10" h», the switching times are found to



roughly 1lic between " and 80 hr [3]. The computed dynamics of an immune re-
sponse following the optimal strategy is illustrated in Fig, 2, Sensitivity
studies show that in the range of realistic parameter values these curves are

very representative of the optimal response dynamics.

The biological evidence supporting the optimal stratzgy is of two types:
kinetic and morphological. Since plasma cells secrete antivody much more rapidly
than large lymphocytes one can experimentally atterpt to determine the secretion
rates of the various cells participating in an immune response as a function of
time after antigen injection. Experiments of this type by Baker et al [5,6]
showed that in the response to type III pneumococcal polysaccharide, an antigen
that does not produce any detectable memory [5], two types of antibody-producing
cells are formed, antigen reactive cells (ARC) which secrete antibody slowly and
arise at an expone tial rate and plaque forming cells (PFC) which secrete anti-
body rapidly. With an optimal immunizing dese of SSS-III, maximal numbers of ARC
are seen 2 days after immunization. At about this same time serum antibodv is
detected and PFC begin to appear. 1If one identifies the slow secreters (ARC)
with large lymphocytes and the rapid secreters (PFC) with plasma cells then the
observation of Baker et al is in accordance with the predictions of the optimal
control model (see Fig. 2). .

Morphological studies can also be combined with kinetic studies to determine
wvhen, in the immune response, plasma cells are formed. Such studies are clearly
more tedious to perform since large numbers of cells must be scanned to extract
a subpopulation which 1s secreting antibody and these :>2]lls must then be examined
«4rrnaronicallv. Russell and Diener [7] studied the eavly phase of the primary
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1mﬁunc response to the thymus independent antipen polymerized flagellin preparnad
from the flagella of Salmonclla adelaide. During the first four days of the in
vivo response they noticed "a striking paucity of antibody-forming plasma cells.”
Similar morphological studics by Zagury et al [8) on the response to horseradish
perioxidase in rabbits showed that the percentage.gf antibody-secreting lympho-
cytes wvas a maximum when antibody secreting activity-was fire* detected (day 7)
and then declined, while the percentage of plasm~ ceils increased wiwa time,
reaching a maximum late in the response (day 183.

The biological evidence confirms the qualitative predictions of the optimal
control model. As of yet no quantitative comparisons have been made. However,
for the sake of argument let us assume that the immune system does in fact regu-
late its cell populations in a bang-bang fashion. One must then ask how does the
immune system decide when to switch? For thymus-dependent antigens, substantial
evidence has now been accumulated showing that antigen alone is sufficient to
cause B cell proliferation, but that another lymphocyte, type T cells, are re-
quired for the differentiation and maturation of the B cell [{9-11l]. T cells
apparently control E cell differentiation by secretion of a soluble factor, but
the mechanisms regulating tha release of this factor are unknown. In the response
to thymus independent antigens, T cells are not required and other explanations
must be sought. Studies of B cells in culture have indicated that high cell
densities favor maturation to non-dividing plasma cells, while cultures of the
same cells at low densities favor proliferation [12]). TFurther, the lower the
initial cell density in a culture the longer the proliferative response and the
later the peak in the plaque forming cell response [12]. (PLaque forming cells
are cells which secrete sufficient-amounts of antibody so as to be detectable by
the hemolytic plaque assay.) These experiments argue for the presence of closed
loop control in the B cell response. Models need to be formulated and analyzed,
incorporating the dependence of B cell proliferation and differentiation on fac-
tors such as the antibody and antigen conceniration, the fraction of cell receptor

sites bound, or their rate of being occupied, and the cell density.

IV. OPTIMAL STRATEGY FOR MEMORY CELL FORMATION

The immune response to more than one encounter with tha same antigen 1is usu-
ally characterized by a phenomenon called immunological memory, in which the
second and subsequent challenges induce more rapid'and more vigorous antibody
responses than the first, Figure 3 1llustrates the typical dynamics of the

primary and secondary immune responses The memory of the first encounter with
antigen is carried by cells which for obvious reasons have been termed memory

cells. Although there is eome question as to precisely which B cells become



memory cells, I shall adopt the model shown in Fig. 4 in which memory cells are
generated from large lymphocytes. Memory cells are very long lived so no death
rate for them has been incorporated into the model. Additionally, as shown ir
the figure, memory cells are believed not to secrete antibody. Memory cells
generated durirg a primary immune response, transform into large lymphocytes, on
subsequent encounters with antigen, thus providing a greatly increased initial
pool of cells responsive to previously fought antigens.

As depicted in Fig. 4 large lymphocytes now have three choices: they can re-
main proliferating cells and secrete modest amounts of antibody, differentiate
into plasma cells and secrete large amounts of antibody but at the expense of
being short-lived, or they can differentiate int:o non-antibody secreting memory
cells and be held in reserve for later encounters with antigen. One can again
ask how such a system should be controlled in order to provide optimal survival
value to the organism- If one chooses the elimination of antigen in minimal time
as an optimization criterion then in the response to a single challehge with anti-
gen no memory cells should be formed. Instead, consider the more realistic situ-
ation in which antigen is encountcred many times with probability Py for the ith

encounter. The appropriate optimization criterion would then seem to be

© T .
)3 T

min J = Py dr (25)
i=1 0
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where T, 1is the time required to eliminate the antigen on the ith encounter.

A more co;pletc discussion of the appropriate choice for an optimization crite-
rion can be found in (1R].

In order to elucidate the optimal strategy for B memory cell production it
suffices to conasider 2 encounters with antigen, the first occurring with proba-
bility 1 and the second with probability p [12]. Thus the criterion (25) re-

duces to

T T

1 2
min J -f dt + pf dt (26)
U(').V('; 9 0

where T1 and T2 are the times required to secrete amounts of antibody AI and
A;. respectively, needed to neutralize thn antigen in the primary and secondary
responses. The dynamic constraints are simply generalizations of Eqs. (2)-(4)

and, as can be seen from Fig. 4, are

A = k(L + YP) (27)

L = bu(t)L - dv(t)L = d[1 - u(t) - v(t)]L - wl (28)

P - dv(t)L - uP ) (29)
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M=d[l - u(t) -~ v(r)]L ey
The initial conditions for the primary response are

A(0) = P(0) = M(0) =0 and L(0) =0 (31)
whereas for the secondary response the initial conditions are

A(0) = P(0) = 0, M(0) = M and L(0) =AM(T)) + L (32)

20 20

Here I have nssumed that the second encounter with antigen occurs sufficiently
long after the first encounter that the primary response has ceased, all remain-
ing plasma cells have died and all secreted antibody has been catabolized. The
initial number of lymphocytes responding to the antigen is assumed to be a frac-
tion 0< A< of/gggory cells left at the end of the primary response which
have survived until the second infection, plus a small number, L20' of lympho-
cytes which naturally become stimulated by the antigen. A number MZO os the surviving
memory cells are not stimualted to become large lymphocytes and thus M(0) = M20'

The calculation of the optimal response can be greatly simplified by observ-
ing that durlng the secundary responae no memory cells should be produced since
antigen 15 sure never to be seen again. Thus the secondary response should be
carried out in the fashion computed in Section II1. If we assume A; is large,
then there is a single switch during the secondary response and T; is given by
Eqs. (18) and (19) with L0 replaced by AH(TI) + L Notice T* is a function of
H(Tl) and thus the optimization problem

20° 2
1
min J = de + p'r5 ' (33)

u(*),v(s) 0

becomes a nminimal time problem with terminal cost which can be solved by
Pontryagin's principle [13].

The extremal solution for the primary response, computed in ref. [12], is
again bang-bang. However, now the sequence of switches depends crucially upon
the parameter p. Let g(t) = [u(t),v(t)] be the control vector. If A%, the
required antibody production, is larger than some critical value, then there are
3 possible switching sequences, with the initial phase always being lymphocyte
proliferation, g = (1,0). This is then followed by (A) a switch to plasma cell
production, g = (0,2), followed by a switch to memory cell formation, U = (0,0),
or (B) a switch to plasma cell formation, succeeded by a switch back to ;ympho-
cyte proliferation, and then a final switch to memory cell formation, or (C) a



switch to memory cell production., I will refer to these three pousible strate-
gies as (L,P M), (L,P,L,M) and (L,M). 1If A; is gufficiently small no initial
phase of lymphocyte proliferation will be necessary and the additional strategies:
(M), (P,M), and (P,L,M) may occur. One important conclusion is that in all cases
meoory cells are only produced at the end of the response., For the biologically
interesting case of large A; one finds that for small values of p, where the
secondary response is not weighted very hcavily, the extremal strategy is (L,P,M),
i1.e., proliferate first, then differentiate intb plasma cells, and towards the
end of the response make mem~ry cells. For somewhat larger valuee of p the
extremal strategy changes f .. more emphasis is placed on making memory cells,
After plasma cells are formed the lymphocyte population is depleted and thus to
make large numbers of memory cells the lymphocyte populetion must first expand.
Thus the strategy becomes (L,P,L,M). For somewhat higher vlaues of p one finds
the extremal strategy switches back to (L,P,M) with a lengthened initial lymphn-
cyte proliferation phase. Finally, for very high values of p, the extremal strat-
egy simply becomes (L,M). Here the number of memory cells is so large that iu
order to generate them one needs a lymphocyte population which in itself is suf-
ficiently large that it can handle the primary infection.

IV. BIOLOGICAL DISCUSSION OF THE EXTREMAL STRATEGIES FOR MEMORY CELL FORMATION

The (L,M) strategy generally entails the production of an unrealistically
large number of lymphccytes and memory cells. At such high population densities
lymphocyte growth is probably logistic, not exponential, and hence I doubt if
this strategy would commonly come into play in real biological systems. Further,
if one examines the cost functional J for each of the strategies one finds that
the (L,P,L,M) strategy provides a negligible advantage over the simplier (L,P,M)
stratégy. For reasons of economy, I expect that the (L,P,L,M) strategy would not
be utilized and thus I predict that only the (L,P,M) strategy would be found in
real biological systems.

The dynamics of the primary response using the (L,P,M) strategy and the sub-
sequent secondary response using the optimal (L,P) strategy computed in Section
IT is illustrated in Fig. 5. Notice that the primary response takes nearly 100 .
hr vhile the secondary response takes only 30 hr. Also in the primary response ‘
the antibody concentration is nearly zero for the first 60 hr, whereas in the
secondary response no measureable lag occurs in the production of antibodice ..
These curves which illustrate the amount of antibody produced cannot be directly
compared to those in Fig. 4, which show tl\e actual serum antibody concentraticn
and thus include the effects of the elimination of antibody by combination with
antigen and natural metabolic breakdown. However, the curves do illuatrate the



N
1
-1
-

Number Of Cells X 10°®
D o b D N

o
N

)
Time (h)
14

1 1T 1T 1

o_ i

o
@

Number Of Cells X 10~
o o
D [+}]

o
N

O

O 5 1015 20 25 0
Time (h)

O 20 40 60 80 KO

A x |0% (moles)

A x 10® (moles)

N

1 ¥ | LD
(b)
°T [
4\— -
o -
3 A
2l -
- -
Q020 20 60 80 100
Time (h)

S——TT—T
- (d) {
4}- .
i l
] o J =
b A ' -
2l- -
i T
- -
0 015 30

Time (h)

\



ar;ater efficiency of the seccndary response and the observed lack of a lag in
ant4hedy production,

The most significant prediction of the optimal control calculation is that
nemory cells should be produced at the end of a primary response. This, of course
scems almost obvious. Since memory cells produce no antibody and hence provide
no advantage to the current response they should only be formed once the current
infection has been successfully handled.* Some but not all biological evidence
supports *his conclusion as detailed below: .

1) The average affinity of antibody secreted during a secondary response 1is
high and 18 about the same as the average affinity seen at the end of the primary
response., This is consistent with the notion that lymphocytes secreting high
affinity antibody at the end of the primary response become memory cells.

2) A variety of studies aimed at examining the kinetics of memory cell for-
mation found that the major increase in the number of B memory cells occurs after
the peak of antibody forming cells has been detected [14-15]. However, one study
found that antibody forming cells and memory cells appeared simultaneously [16].

3) Memory cells are believed to be formed in the germinal centers of lymph
nodes, which are structures whose formation .s induced by antigen late in an
{mmune response. Destruction of the germinal centers was found to leave the
dynanics of antibody formation unaffected but to eliminate immunological memory
(17,18). Although other explanations are possible the most obvious 1s that ger-
minal centers are required for the production of memory cells and that such gen-

eration takes place after the formation of plasma cells.

V. DIRECTION FOR FUTURE RESEARCH

The solutions to the optimal control problems that I have discussed appear
to be consistent with biological reality. Besides leading one to believe that
the immune system might in fact have been optimized by natural selection, the
computations have shed some light on immunological control strategies. Given
these initisl successes it seems worthwhile to examine even more realistic models.
The antigens dealt with so far have been non-replicating. However, the immune
system has clearly been designed as a defense mechanism against groving antigens
such ar pathogenic orpunisms or tumor cells. The explicit inclusion of a growing
antigen leads to nonlinear atate space models of at least 4 dimensions. A simple

This line of reasoning leads one to believe that T,, the time at which
A{T;) = A*, may not be the appropriate time to terminlte the primary response in
80 far as'memory cell production is concerned. See ref. [132] for further dis-
cussion of this important modeling consideration.



nodel of this type that I am working on with Sol Rocklin of the University of
alifornia at Berkeley differs fundamentally from the models already presented
in that singular control becomes possible and the state and adjoint equations be-
‘ome so intricately coupled that numerical solutions become nccessary. An added
complication that secms necessary is to use logistic rather than exponential
growth cquations for both the lymphocytes and antigen so as to avoid obtaining
strategies such as (L,M) which generate unrealistically large cell populations.
0f a more fundamental nature is the recognition that the models considered so
far only deal with the immune response to a single antigen., However, in actu-
ality an animal is constantly bombarded by a multitude of different antigens all
of which must be coped with to ensure survival. Since the number of lymphocytes
in an animal is maintained relatively constant, an organism by expanding the
population of cells reactive to one antigen must be decreasing populations of
cells with other antigen specificities. Such effects need to be congidered ar.d

should lead to some very interesting stochastic allocation models.
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FIGURE CAPTIONS
Fig. 1. Block dlagram of B cell prollferation and plasma cell fo:metlon.

Flg. 2. Optimal resconse dynamics. (2) the number of large lymphocytes and
plasma cells as & function of time. (b) The amount of antlbody secreted as a
function of time with b= d = 0.1 hr™!, 1, = 0.62 he™!, u = 107 ne™!, y = 10,
Ly = 4 x 10“. k=6x 10" moles cell™" he™! and A* = 5 x 1078 moles.

Flg. 3. The Immune response to the same antigen given at two widely spaced times.

Filg. 4. Block dlagram of B cell proliferation and differentiation Into plasma

" cells and memory cells.

Fig. 5. Dynamics of the optimal primary and secondary responses with p = 0.1,
k = 6.25 x 1072€ motes cer1™! hrl, ag = A3 = 5 x 107 moles, Ly = 4 x 10°, and
LZO - 4 x 103. (a) The number of large lymphocytes, plasma cells and memory

cells produced as a function of time during the urimary response. (b) The number
of moles of antibodies secreted as a function of time during the primary response,
(c) The number of large lymphocytes and plasma cells produced during the secondary

response., (d) The antibody secretion during the secondary response.



